Characterization of Nuclear Recoils in High Pressure Xenon Gas:

Towards a Simultaneous Search for WIMP Dark Matter and Neutrinoless Double Beta Decay

J. Renner^{1,2}, V. M. Gehman¹, A. Goldschmidt¹, D. Nygren¹, C.A.B. Oliveira¹, for the NEXT Collaboration

¹ LBNL ² UC Berkeley

TAUP 2013, Asilomar, CA September 11, 2013

The gas phase offers:

- Better intrinsic energy resolution $F \sim 0.15$ in gas vs. $F \sim 20$ in liquid, where $(\Delta E/E)^2 = F(W/E)$, and W is the energy to produce an electronion pair
- Attributed to large fluctuations between recombination and scintillation in liquid phase [1]
- Room temperature operation

Energy resolution in gaseous xenon with varying density; from [1].

Electron recoils: energy resolution

- Near-1% FWHM Resolution [1] at 662 keV with tight fiducial cut
- Extrapolate to $Q_{\beta\beta} = 2458.7 \text{ keV } [2]$: ~0.52% FWHM

Electron recoils: tracking

137Cs track reconstructed with SiPMs in NEXT-DEMO prototype in Valencia, Spain

Perspective:

- gas phase offers good energy resolution using just the ionization signal
- 0.5% energy resolution at $Q_{\beta\beta}$ (EL noiseless gain maybe also save for after prototype discussion) with topological rejection scheme (tracking)
- opportunity for dark matter searches: low fluctuations gives better resolution in the ratio of ionization to scintillation (S2/S1); better electron/nuclear recoil discrimination

We now understand performance of pure xenon for detection of electron recoils: We wish to investigate response of gas phase xenon to nuclear recoils

An electroluminescent TPC:

- Incident particle deposits energy, producing ionization (S2) and scintillation (S1)

- Electrons drift in an electric field to a narrow region of high field

- xenon medium scintillates as the electrons traverse the EL gap; electrons gain enough energy to excite but not ionize xenon atoms

Wavelength Shifting:

- TPB (tetraphenyl butadiene)-coated 3M reflective films
 - Placed surrounding drift region and just behind EL region
 - Wavelength shift ~170 nm xenon light to ~ 430 nm
 - Factor of ~3 better light collection efficiency

The NEXT-DBDM prototype:

09/11/2013

Josh Renner, TAUP 2013

The NEXT-DBDM prototype:

- A prototype for NEXT [1]:
 - NEXT-DBDM: **NEXT D**ouble-**B**eta **D**ark **M**atter
 - Focus on energy resolution and tracking [1], and now detection of nuclear recoils

Grid

PMT Array

Experimental setup:

- Tag 4.4 MeV γ rays to identify neutron-induced events:
 - ~14 bar xenon gas recirculating through hot getter
 - coincident with approx. 65% of neutron emissions
 - use a NaI scintillating crystal + PMT to detect γ

Nal scintillator

Neutron source 238Pu/Be

Lead block (2" thick)
TPC

²³⁸Plutonium-beryllium (α, n) neutron source:

$$\alpha + {}^{9}Be \rightarrow {}^{12}C^{(*)} + n$$

Source spectrum calculated [1-3] for a uniform Pu/Be mix. The ¹²C* spectrum is observed, and the decay of the excited C nucleus yields a **4.4 MeV gamma**.

^[1] See e.g. K. Geiger and L. V. D. Zwan, Nucl. Instr. Meth. 131, 315 (1975).

^[2] T. Murata et al., JENDL (α,n) Reaction Data File 2005. http://wwwndc.jaea.go.jp/ftpnd/jendl/jendl-an-2005.html.

^[3] NIST, ASTAR: stopping power and range tables for helium http://physics.nist.gov/PhysRefData/Star/Text/ASTAR.html.

Nuclear recoils in Xe:

- Neutrons create low-energy recoils:
 - maximum recoil for neutron energy E [1] is: $E_{max} \sim (4/A)E$

E_{max} ~180 keV for ~6 MeV neutron

09/11/2013

Nuclear recoils in Xe:

Rate is much lower for higher-energy (relatively easier to detect) neutrons

Analysis: waveforms

Candidate neutron events (experiment):

- Single gaussian-like pulses; width is dependent on drift time
- Triggered on S1/NaI (4.4 MeV) coincidence, and S2 NIM-based trigger; waveforms read out using a Struck digitizer

Analysis: diffusion

• Diffusion cuts isolate events with correctly chosen S1:

- Single-pulse events in "diffusion band" are those for which S1 was properly identified
- Diffusion consistent with ~ 0.5 mm/cm^{1/2}

Analysis: S1 vs. S2

Nuclear and electron recoils separable at high energies:

- Monte Carlo quenching set to 1/2.14 for S1, 1/6.15 for S2; constant in energy (not the case in liquid xenon)
- More low-energy gamma background present in data
- Energy resolution in data unexpectedly poor, perhaps due to TPB

Analysis: S1/S2

• Clear separation between neutrons and gammas:

Analysis: S1/S2

Clear separation between neutrons and gammas:

Nuclear recoils

Analysis: S2/S1

• Clear separation between neutrons and gammas:

Analysis: S2/S1

Clear separation between neutrons and gammas:

Electron recoils (mostly x-rays)

Nuclear recoils

Conclusions - nuclear recoils in xenon gas:

- Gas provides reasonable electron/nuclear recoil discrimination
 - S2/S1 significantly different for two types of events
 - exact yields and their energy dependencies still unknown
- Better understanding of experimental setup and hardware trigger is required:
 - Factor of ~15 difference in calculated and expected source rate based on event rate computed from Monte Carlo
 - Apparent reduction in rate at lower drift fields
 - Degradation in energy resolution since the time of the electron recoil studies (possibly due to use of TPB)

Ton scale + directionality:

- Columnar recombination and track orientation:
 - WIMPs in a dark matter "halo" would cause nuclear recoils with a preferred direction [1]
 - Recombination signal in gas may provide the information necessary to determine nuclear recoil direction relative to an external field (idea of Dave Nygren)

More columnar recombination

Less columnar recombination

09/11/2013

Simultaneous 0νββ and dark matter search:

- Large gaseous xenon detector:
 - Similar detection strategies and requirements for both searches

Combines:

- √ good energy resolution
- ✓ tracking
- (✓) electron/nuclear recoil discrimination
- (?) nuclear recoil directionality

See posters by Carlos Oliveira and Dave Nygren

Thank You

This work was supported by:

- the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy (Contract No. DE-AC02-05CH11231)
- the National Energy Research Scientific Computing Center (NERSC), supported by the Office of Science of the U.S. Department of Energy, (Contract No. DE-AC02-05CH11231)
- a Department of Energy National Nuclear Security Administration Stewardship Science Graduate Fellowship, (Contract No. DEFC52-08NA28752)

Additional Slides

Nuclear recoils: Monte Carlo (GEANT)

- Contains steel vessel, drift and EL regions, PMTs, lead block, and Nal crystal
- W = 21.9 eV,
 W_{sc} = 100 eV,
 EL gain and PMT QE matched to give approx.
 correct S1 and S2 yields
- Nuclear recoils modeled as "generic ions" in GEANT

$$S1_{NR}/S1_{\gamma} = 1/2.14$$

$$S2_{NR}/S2_{\gamma} = 1/6.15$$

Neutron spectrum input from calculation

The NEXT experiment:

- A 0νββ experiment in Canfranc, Spain [1]
 - up to 150 kg of Xe, enriched to isotope ¹³⁶Xe
 - 1.36 m diameter, 2.28 m long cylindrical main vessel
 - ~7000 SiPM-tracking plane; 60 3-in. PMT energy plane
 - electroluminescent gain
 - expected resolution near 0.5% FWHM at Q_{gg}

Funding secured from the ERC this year

Liquid vs. gaseous xenon: nuclear recoils

• S1 and S2 yields for recoils in gas are unknown:

- Same energy dependence and magnitude in gas?

Relative scintillation efficiency in liquid xenon; from NEST [1].

Molecular additives:

- Could provide several advantages:
 - Penning effect: conversion of excitation into ionization, eliminates primary S1
 - cooling of electrons potentially increases columnar recombination; improved directionality signal

See poster by Carlos Oliveira

Liquid vs. gaseous xenon: nuclear recoils

Measurements taken at TAMU (J. White):

09/11/2013

Josh Renner, TAUP 2013

34

²³⁸Plutonium-beryllium (α, n) neutron source:

$$\alpha + {}^{9}Be \rightarrow {}^{12}C^{(*)} + n$$

Source spectrum calculated [1] for a uniform Pu/Be mix from JENDL [2] (α , n) cross sections and angular distributions, and dE/dx in ⁹Be from NIST ASTAR [3]. The ¹²C* spectrum is observed, and the decay of the excited C nucleus yields a 4.4 MeV gamma.

$$N(E_n; E_{\alpha,i}) = \int_0^{E_{\alpha,i}} dE_\alpha \frac{4\pi [d\sigma(E_\alpha; E_n)/d\Omega]}{dE_\alpha/(\rho dx)[E_n(0) - E_n(\pi)]}$$

^[1] See e.g. K. Geiger and L. V. D. Zwan, Nucl. Instr. Meth. 131, 315 (1975).

 $[\]label{eq:continuous} \ensuremath{\text{[2] T. Murata et al., JENDL } (\alpha,n) \ensuremath{\text{Reaction Data File 2005.}} \ensuremath{\text{\color:http://wwwndc.jaea.go.jp/ftpnd/jendl/jendl-an-2005.html.}} \\$

^[3] NIST, ASTAR: stopping power and range tables for helium http://physics.nist.gov/PhysRefData/Star/Text/ASTAR.html.

The NEXT-DBDM prototype:

• Simulation: electron recoils in pure HPXe, F = 0.15, 10% optical efficiency: by Justo Martin-Albo, IFIC, Valencia

The NEXT-DBDM prototype:

Neutron vs. electron recoils:

Studies in liquid Xe; gas Xe should be similar

- S2/S1 nuclear recoil discrimination
- use neutrons to produce nuclear recoils for calibration

Example: XENON prototype [1]

5 Ci Am/Be neutron source

- 5 pe/keVee (1 pe/keVr) S1
- 8.4 pe/electron S2
- $>\sim$ 7.5% light collection efficiency

We attempt similar measurements in ~14 bar gaseous xenon

09/11/2013

Josh Renner, TAUP 2013

Example of a candidate neutron event:

- nuclear recoil produces a short track
- single, Gaussian-shaped pulse

^{*} Thanks to Yasuhiro Nakajima for reducing our electronic noise significantly

Electron-positron annihilation radiation

- Coincidence between collinear 511 keV gamma rays
- Same trigger conditions as neutron run (except Nal scintillator region of interest)

Nal scintillator

TPC

²²Na source

S2/S1 recoil identification: γ vs. neutron sources

Neutron source

Gamma source

Neutron source

Gamma source

09/11/2013

Josh Renner, TAUP 2013

42

S2/S1 recoil identification (~14 bar gaseous Xe)

09/11/2013

How TPB helped

- ~ 511 keV gammas;
- ~ 200 average S1 photons
- ~ 0.4 photons/keVee

- ~ 662 keV gammas;
- ~ 800 average S1 photons
- ~ 1.2 photons/keVee

* Approx. factor of 3 improvement in light yield

(Note: drift fields were not matched)

Energy spectrum for ¹³⁷Cs source:

- Peaks integrated and identified as \$1 or \$2
- S2 proportional to energy of event
- No corrections on physics applied

Position-dependence

- Events located radially outward from central point register lower in E
- Correct with radial cut (r*) for now
- Better tracking will improve correction capabilities

09/11/2013

Josh Renner, TAUP 2013